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We derive an infinite hierarchy of integral equations for the Green functions of a 
many-particle system. This set of equations forms the basis of a unified approach 
to the perturbation theory of many boson and many fermion systems and avoids 
the introduction of the adiabatic hypothesis. It is demonstrated how a well-known 
ground state perturbation theory of a system of interacting fermions is obtained 
without introducing disconnected diagrams. It is shown that the formalism 
allows a self-consistent determination of the condensate Green function of a 
condensed Bose system and a derivation of the Beliaev, Hugenholtz, and Pines 
result for the single-particle k ~ 0 Green function is given. A new self-consistent 
equation for the k = 0 Green function is solved to yield the well-known self- 
energy relation ~11 - Y02 =/.t which plays the role of a self-consistency condition 
on the theory. 

1. I N T R O D U C T I O N  

A n  exact,  f i rs t -pr inciples ,  m a n y - b o d y  pe r t u rba t i on  theory desc r ip t ion  
of  the proper t ies  of  l iquid 4He is still lacking. To examine  the poss ib i l i ty  of  
condensa t ion  into the k = 0 mode,  it is na tura l  to focus a t t en t ion  on the 
s ingle-par t ic le  condensa te  (i.e., k = 0) Green  funct ion  g o ( t -  t'). Deno t ing  
the normal ized  in te rac t ing  g round  state by  Iq~N) and a He i senberg  pic ture  
ann ih i l a t ion  o p e r a t o r  for the k = 0 mode  by  a0, , ( t ) ,  this quan t i ty  is def ined  

(Beliaev, 1958) 

iG o ( t  - t ' )  = <'t'N I T [ ao,  (t)ato,, ( t')] I't 'N) (1) 

F o r  a condensed  sys tem and employ ing  the He i senberg  p ic ture  of  
Hugenho l t z  and  Pines (1959) (Beliaev, 1958), one expects  on the basis  of  
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physical  arguments that 

iGo( t - t ' )  = n o (2a) 

( iGo( t -  t ' )  = n o e - i t , , - , ' ) )  (2b) 

Here n o is the particle density in the condensate and /~ the chemical 
potential. Ideally, one would like to start from a purely microscopic theory 
capable of describing a Bose system which may or may not possess a 
condensate and determine under what conditions equations (2) are valid. 

In the approach of Hugenholtz and Pines (1959) the validity of 
equation (2a) is guaranteed from the outset by replacing the k = 0 operators 
by the c number n o. Thus, the theory is restricted to the descriptions of a 
condensed Bose system only. 

An alternative formalism, which might be more readily adapted to 
describe a noncondensed system, has been provided by Beliaev (1958). In 
principle this approach might be adopted to evaluate G O , without introduc- 
ing assumptions concerning the k = 0 mode. However, it is shown in Section 
2 that this formalism leads to inconsistencies when one attempts to insert 
equations of the form of (2) into the diagrammatic perturbation series which 
result from application of the adiabatic hypothesis. It would thus appear 
that adiabatic switching must be avoided if equations of the form of (2) are 
to be employed self-consistently in the analysis. 

Most modern formulations of perturbation theory avoid adiabatic 
switching (Amit, 1978). Unfortunately they do not readily lend themselves 
to a Beliaev type of approach. For this reason, in the present paper, we 
introduce in Section 3 a new approach to perturbation theory. The resulting 
formalism is applicable to both many-fermion and many-boson systems and 
allows an approach to the many-boson problem which is free from the 
inconsistencies discussed above. Furthermore it yields an exact ground state 
many-boson perturbation theory which possesses a manageable diagram- 
matic structure. The theory is applied to a noncondensed system in Section 
4 and to a condensed system in Section 5. 

2. CONVENTIONAL PERTURBATION THEORY AND 
ADIABATIC SWITCHING 

In the usual approach to perturbation theory one introduces the notion 
of adiabatic switching. To this end, the time-independent Hamiltonian 
H = H 0 + H I is replaced by 

H" = H 0 + e - eltln 1 

Employing the well-known Gell-Mann and Low (1950) procedure the 
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interacting ground state Ixt'N) can be generated from the noninteracting 
ground state ICN) in the usual manner (Fetter and Walecka, 1971). For our 
purposes we simply note that we can write, in symbolic notation, 

I~t'N) = lim ['I'~,] 
E ~ O  + 

Similarly the single-particle Green function G(1;I') defined by (Fetter and 
Walecka, 1971) 

a (1  ; 1') = - i(ff 'NlT [~bH(1) hb~(l')]lXt'N) 

can also be written in the symbolic form 

Within conventional perturbation theory, one assumes that the product of 
the limits equals the limit of the product and hence we obtain 

iG(1;l')=i lim [G~( l ; l ' ) ]  
~ 0  § 

where we have defined 

ia~(1;l ')  = (~t'~,IT(q~H,(1) ~b%,(l'))l'I~r~ > 

With this as a prelude we now consider evaluating the condensate Green 
function. To this end we take a system of N interacting bosons of mass m 
enclosed in a volume V and suppose N and V to become infinite while the 
density n = N~ V remains finite. If the ground state of the noninteracting 
system is denoted by I~N) where 

IdPN> = ( N ! ) - ' / 2 (  ato) g I0) 

the condensate Green's function in the interaction picture is, in an obvious 
notation, 

iGtol)( t - t') = (r t )a t (  t')S]ld~N) 
(r 

(3) 

where S is the S-matrix operator. Employing standard procedures (Beliaev, 
1958) we may readily expand iGto~)(t- t') in the form shown in equation 
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(4): 

�9 ~(,) S" 
~o (t-t')=- 

SN 

t t t t 

i 

t' t' t' t' 

(4) 

where a dotted line entering (leaving) the point x---xt~ represents an 
operator a(t,)[at(tx)] and a solid line running from y to x represents a 
factor g( x, y ), where 

g(x,  y)  = (0IT [q, (~),/,*(y)]lO) (5) 

(It is to be emphasized that the self-energy ot is defined by this equation.) 
Although S" is topologically identical with SN, the two do not cancel. 

However there is a well-known method of overcoming this problem 
(Brandow, 1971). In order to apply this method we first rewrite equation (4) 
in the following form: 

I, 

iG~'  ( t - t ' )  = ~ -  + -  S " *  S" .  x S" "  S" (6) 

The procedure then is simply to connect the dotted lines to each other in all 
possible ways to form continuous lines and impose the rule "associate a 
condensate weight ( -1 ) /+cV-  CNt with every diagram containing 1 loops 
and c condensate lines." Cancellation of disconnected diagrams by S N in 
equation (6) now occurs, but at the expense of greatly increasing the number 
of connected diagrams. After changing dotted lines into condensate lines 
and allowing for cancellation of disconnected diagrams equation (6) takes 
the form 

- , , 

I~ o ( t - t ' )  - - +  ~ * , . 
i , 

which defines the self-energies Z B = (~) and Z c =  � 9  

(7) 
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As a result of the large number of connected diagrams generated by the 
above procedure, the resultant complexity makes the neglect of diagrams of 
relative order V -  t highly desirable. It can readily be seen that the leading 
diagrams in the perturbation series expansion are bubble diagrams, all other 
diagrams being of relative order V - I. Because of this these diagrams are the 
only ones ever considered by many authors (see, for example, Brandow, 
197 l, and Lee, 1971). We therefore consider the summation of this subset of 
terms on the right-hand side of equation (7). 

In order to carry out the summation of all the bubble diagrams 
consider first the quantity fl defined by the equation 

[=  ; .  (8) 

With this definition it is clear that the sum of the first two terms on the 
right-hand side of equation (7) is simply nfl which we denote as follows: 

000 N 
n 13 : - ~  A (9) 

 oooJ 
Now fl is obtained from the first term on the right-hand side of equation (6) 
by allowing the dotted lines connected to the horizontal bar to pair with 
dotted lines is S". It is clear that this procedure can be carried out on all the 
other terms in this same equation. We may therefore omit all contributions 
to y c that contain "disjointed" parts and reinterpret a condensate line as 
( - f l / V )  rather than simply ( - 1 / V ) .  (A disjointed part is that part of a 
self-energy insertion which becomes disconnected from the rest of the 
diagram when all the condensate lines are removed.) It now readily follows 
that we can rewrite equation (7) in the form 

" '  :~176176 LY:'' 
,G O ( t  - t ' )  ~ , * .  T @ ** (10) = , ., ** ~ "  

%000r ** * 
%***** 

Since, for the present subset of diagrams, a diagram containing m renormal- 
ized condensate lines also contains m loops, we may change the rule for 
obtaining condensate weights to associate a factor (fin)" with any diagram 
containing m condensate lines. In view of this we can rewrite equation (10) 
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in the form 

iG~ ) ( t -  t') 

t t 

o 

.s 

.' | 

t '  t '  

The self-energy Z c may now 
y . c  denoted by o as shown in equation (12): 

t 

t '  

(11) 

be expanded in terms of a proper self-energy 

Employing the usual definition of a Fourier transform (Fetter and Walecka, 
1971) we obtain from equation (12) the result 

�9 c y , c ] - l  
Y f k ) = Y ~ ( k ) [ 1 - - g ( k )  (k)l 

where [see equation (5)] 

g( k ) = [o~-  o~ k + i n ] - '  

Substituting these two results into equation (11) gives 

iG(o')( t - t') = f i n [ 1 -  g(O) Y..~o~] -2 (13) 

The two sides of this equation are mathematically inconsistent since the 
right-hand side is time independent, whereas the left-hand side is a function 
of ( t -  t'). It must be emphasized that this noncompatibility of the time 
dependencies is not simply a consequence of our defining the interaction 
picture in terms of H 0 rather than K o = H o - t t N .  Although a ( t ) =  
e x p ( i H o t / h ) V - 1 / 2 a o e x p ( - i H o t / h  ) is time independent, the right-hand 
side of equation (3) is time dependent; the dependence on t and t' arising 
from the presence of the Wick time-ordering operator. 

The above analysis could have been carried out in the interaction 
picture of the Hamiltonian K 0 = H 0 - /~N thus giving the operator et(t) an 
explicit time dependence exp(il~t/h). This would however lead us to define 
our Heisenberg picture in terms of the Hamiltonian H 0 + H~ - / a N  and in 
this picture equation (13) is simply multiplied on both sides by a factor 
exp[i/~(t- t ' ) /h] ,  which clearly will not affect the argument given above. 
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Hence, in summary, we see that employing conventional perturbation 
theory leads to a mathematical inconsistency which we attribute to the 
adiabatic switching device. In the following sections we therefore consider a 
new approach to perturbation theory which avoids the concept of adiabatic 
switching as it is normally applied in the definitions of the ground state 
wave function and the Green functions of a system. 

3. A HIERARCHY OF EQUATIONS FOR THE GREEN 
FUNCTIONS OF A MANY-PARTICLE SYSTEM 

Our aim is to introduce a new hierarchy of integral equations for the 
various Green functions of a many-particle system. This set of equations is 
analogous to the system of coupled differential equations which arises 
within the equation-of-motion method. However, the hierarchy of equations 
presented below has the advantage that it is readily analyzed by diagram- 
matic techniques. This feature provides us with a particularly simple and 
transparent approach to perturbation theory, which is discussed in detail in 
Section 4. 

The Green functions of a many-particle system may be defined by 

( i )  (m +")/2G((, ..... ..... ):,.... ,)= ( ' ~u lT[q~n(1 ) . . . q Ju (m) q~( l ' ) . . .+~(n ' ) ] l ' ~ ' u )  

(]4) 

In this equation, m + n is taken to be even and the Heisenberg picture has 
been employed. 

To analyze the right-hand side of equation (14), we first prove a 
theorem on time-ordered products of Heisenberg picture field operators. To 
this end, we note that as a consequence of the equation of motion of the 
time development operator (Fetter and Walecka, 1971) a time-ordered 
product of creation and annihilation operators satisfies the following rela- 
tion, which is derived in Appendix A: 

e - ~l"lei '~ +l~(m)q~( l ' ) . . .  q, tn (n')) 

-- e "lClei'~ T( a Hk ( t') f n(  Z) . . . q, H( m ) q~ H(1 )...~k~(n')) 

i1 

= ~ S " ' + J T ( q , n ( 2 ) . . . q ' n ( m ) + ~ ( l ' ) . . . + ~ ( j ' -  1)[ank(tj), +*H(J')I-s 
j= l  

t , X +tn(j '  + 1). . .+H(n )){0(t, - t j ) -  O(t'-- tj))e -~l';lei'~k'; 

f t f  dtpT( 
�9 I 

- -  l gH( lp)@H(2) . . .q ,n (m)+tH( l ' ) . . .~ (n ' ) )e i~k tp  (15)  
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where 

XH(tp)=(emtp[ak ,Ht]e-mtp-- iesgn( tp)aHk( tp) )e-~l t ,  I (16) 
Note that equation (15) involves an (anti-) commutator of operators at 

equal times. This is to be regarded as a single entity which commutes with 
all quantities under the time-ordering operator. Alternatively, one may write 

' = lim (ank(t~ +~)qfln(j ' )--SqJ~(j ' )ank(t~--TJ))  [ank(t)) '~btn(J')]-s n__.o + 

(17) 

which avoids the ambiguities which arise when T operates on quantities at 
equal times. 

In the limit t ' =  _+ oo, the second term on the left-hand side of equation 
(15) vanishes. As will become clear later, the choice t ' =  + oo is analogous to 
the transformation from particles to holes in the theory of fermions. For this 
reason, it is convenient to introduce the function F(k), which can take on 
values + 1 or 0 depending on the value of the argument k. For values of k 
such that F(k) -- 1(0) the limit t ' =  - oo(+  oo) is taken in equation (15). This 
leads to the result 

e -~l"lT(aHk(tt)~H(2 ). ..~bn(m)~btn(l')...~bt(n')) 

= ~ sm+JT(~bt t (2) . . .~H(m)~( l ' ) . . .hb~t ( j ' - l )  
j=l 

• [aHk(tj), + t n ( j ' ) ] _ s ~ t ( j ' +  1).. .~bt(n'))igk(t t -- t j ) e -  EIO 

+ f~~176 XH(tp)~bH(2). . .q~n(m)~b~(l ') . . .~b~(n'))gk(, ,-  tp) 

(18) 

where we have defined 

i g k ( t , - t j ) = e - i W k ( " - t ; ) [ F ( k ) O ( t , - t j ) - - ( 1  - F ( k ) ) O ( t j - t , ) ]  (19) 

It follows from the definitions of the various operators that 

[aHk( tj), ~Ptn(j')]_ s=  V- ' /2e  -ikx'~ (20) 

and 

x,,( )= v- ',2 f f a3Xp f d3x'. u( p - p , )e -  'k'x" ~ (p')~bH( P') q~ H( P ) 

- ia sgn( t, )ank (tp)e -EI,,I (21) 
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where we have written 

U~( p - p') =-- U(xp - X p )  8( tp - t'p)e - elt~'l (22) 

Hence after substituting equations (19) and (20) into (18) we obtain 

e -~lt ' lr(+n (1)~H (2).. .  + ,  ( m ) ~  (1'). . .  q,~ (n '))  

= L S"'+Jig( 1 - j ' ) e  -~ I t ; IT (~H(Z) . . . t kH(m)+ ~( I ' ) . . . ~ ( j ' -  1) 
j=l 

x q,~ ( j '  + 1)...q,~ (n')) 

+ f d P d P ' U ~ (  p - p ' )g(1 - p')T(  ~b~( p'+ )4'ft( P')q'H( P- ) ~bH (2) 

oo  

X . . .~bn(rn)+~( l ' ) . . .~g~(n ' ) ) - iV- ' /2  ~_, e - i k ' x ' l~ ) ( t , )  (23) 
k = 0  

where 

I~ ' ( t , )  = e L ~ d t p g k (  t , -  tp)sgn( tp ) e - *ltp I 

XT{ank(tp)q,n(2)...~H(m)q,~(l')...q,~(n')) (24) 

OG 

g(J  - J') = Z V- te 'k ' " ' -X; 'gk( t j  -- tj) (25) 
k=O 

and we have employed the notation 

fdPdP '==_ f~176  dt dt' f d3x d3x'p J - ~  P PJz P (26) 

Note that the subscripts + and - in the second term on the right-hand side 
of equation (23) indicate that a suitable interpretation [cf. equation (17)] of 
the arguments of operators at equal times is to be employed. 

Since I~)(t l)  vanishes if the correct limiting procedure is adopted, we 
are now in a position to state the theorem which leads to the desired 
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hierarchy of equations: 

T( q, ,  (1). . .  +H (m)q,~ (1'). . .  +in (n '))  

= E S '+Jig(  1 -  J ' )T(~bH(2) . . .+H(m)+tn(I ' )  
j = l  

X - . . ~ t n ( J ' -  l) q,~(j '+ 1)...q,~(n')) 

+ lim fdp@'U'(p-p')g(1-p)T 
e~O + 

x (q /n (P+)q 'n (P ' )q ' l - t (P-  ) r  q'~ ( l ' ) . - -q '~(n ' ) )  

(27) 

Consider a many-particle system to which the above theorem may be 
applied. A set of equations for the Green function is obtained after taking 
matrix elements with respect to the ground state ['I'N). From the definition 
(14), one obtains 

G(lm.'.n~l'...n')= ~ s m + J g ( l  - i ' ] ( ' ~ , ( m - I ,  n - I ,  d /~(2...m;l ' . . .  j ' - l , j ' + l . . . n ' )  
j = l  

+ i f d P d P ' V ' (  p - p')  g(1 - ,, ~ t':~-,+ ,, ,+ ,) l " ) v (2 . . , ra ,p_ ,p j ;  I'...n', p'+) J 

(28a) 

where the limit e = 0 + is implied. 
A "conjugate" set of equations is obtained by taking the Hermitian 

conjugate of the equation obtained from (28a) after replacing all times by 
their negative and H by - H. The result is 

n 

,) = E sm+Jg(J  ' -  / (n'... j ' + l , j ' - - I  .... I';m...2) 
j = l  

f 1] (';',(n + I, m+ I) + i d P d P ' U ~ ( p  - p ' ) g ( p  - . j r ( f_ . , , , ,  . . .v;f,p ....... 2) 

(28b) 

Equations (28a) and (28b) define the hierarchy of equations which we have 
been seeking and form the basis of our approach to perturbation theory. 
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4. GROUND STATE PERTURBATION THEORY OF 
NONCONDENSED SYSTEMS 

To illustrate how equations (28) may be employed to yield a perturba- 
tion theory, we shall proceed to evaluate the single-particle Green function 
Gtt, i). To this end we introduce the following rules which allow equations 
(28) to be written in terms of diagrams. 

(i) 

(ii) 

Denote c:~m, ,) by m (n) thick solid lines. One end of each fine is 
"-'  ( I . . . m ;  1 ' . . . n ' )  

to be left free and the other end is to enter (leave) one of the points 
1. . .m (1' . . .n ') .  
The fines which correspond to the unprimed (primed) labels of 
G~l~,~l v...,') are to be arranged in the order in which they appear in 
the argument. The line corresponding to 1 (1') is to be placed furthest 
to the left and that corresponding to m(n') is to be placed furthest to 
the right. 

These rules identify two sets of fines. One set refers to labels which 
appear after the semicolon in the argument of G t" '")  and the other set 
refers to those which appear before. Although the relative order of lines 
within a given set is significant, the position of the fines of one set relative to 
those of the other is not. However, when convenient, we shall place the lines 
which refer to labels appearing before the semicolon of G ~'' ") above those 
which refer to labels appearing after. In this way, rules (i) and (ii) lead to the 
representation of the left-hand side of equation (28a) shown in Figure 1. 

Diagrammatic analysis of the right-hand side of equations (28) requires 
the introduction of further rules: 

(iii) Denote g(j, j') by a thin solid line running f romj '  toj .  
(iv) Denote the potential iU~(j- j ' )  by a wavy line joining the points j  

and j ' .  
(v) Integrate over all internal coordinates [i.e., P and P '  of equations 

(28)1. 

(m.n) 

G(1---m~ll-- n') 

1 2 . . . . . . . . . .  m 

4 . , i ,  . . . . . . . . . .  ,I. 
m 

1 " 2 " -  . . . . . . . . . .  n' 

Fig. 1 
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Employing these rules, equations (28) take the form of equations (29) 
of Figure 2 where the quantity S equals +1 for bosons and - 1  for 
fermions. 

As a special case of rule (i), it is convenient to introduce the following: 

(ib) Denote G~il;'il] =- G(i; i') by a thick solid line running from i' to i. 

As examples of the use of rule (ib), Figure 3 shows the m = n = 1 and 
m = n = 2 versions of equations (28a) and (28b), respectively. For conve- 
nience the dummy internal coordinates will no longer be shown explicitly. 

It is now easy to see how diagrammatic perturbation theory arises from 
the hierarchy of equations. To this end substitute equation (31) for the 
two-particle Green function on the right-hand side of equation (30). The 
result is shown in Figure 4 where the last line follows from the fact that 
operators (anti-) commute under the T operator. The last term on the 
right-hand side of equation (32) is evaluated by substituting equation (29b) 

2 . . . .  m 1 2 . . . .  m 1 2 . . . .  m 

. . . .  '1L __-- (s)m+l ' ' . . . .  4' +(s)m+2 L ~ '  . . . .  t 

2"---- n" 1" 2"----  n" 1" 2 " - - - -n "  

I 2 . . . .  r n  2 3 . . . . .  m 

r . . r . /  . . . . .  { { . . . . .  § 

1" 2"---- n" 1" 2" - - -n-1  

4 .  . . . . . . . .  

! 

4. 
n "  

(29a) 

�9 t ,, t 

n ' - - - - 2 "  1 n ' - - - - 2 '  1" n . . . .  2 1 

m - - - 2  1 m . . . .  2 1 m . . . .  2 1 

. . . . . . . . .  +(s) m+m 

. . . .  2' 1' n ' - - - - 2  1 n n-1 . . . .  
. . . .  r . . . .  r 1 6 2  

- 1 . . . .  
m . . . .  2 1 | m . . . .  3 2 

Fig. 2 

4" . . . . . . . . . .  

(29b) 
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I I I I 

G(U') ~, 

I I I I 

111 

(30) 

(2,2) 
G (2'1~2 I) 

2" I' 2" I" I' 2 2" 

Fig. 3 

(31) 

1 1 1 1 1 

�9 , �9 , t 

1 1 1 1 1 

1 1 1 1 

1 1 1 1 

(32) 

Fig. 4 

for the three-particle Green function. The result contains terms involving 
G (2'2) and G (4"4) which may be further expanded by employing equations 
(31) and (29b). Continuing this iterative process to infinity shows that the 
hierarchy of equations may be iterated self-consistently to yield a perturba- 
tion series, which is topologically identical with the usual fermion series 
obtained by employing the adiabatic hypothesis. 

In view of this, we note (Fetter and Walecka, 1971) that the factors S 
may be omitted provided one introduces the following rule: 

(vi) Associate a factor S L with each diagram containing L closed loops. 

The present approach to perturbation theory possesses many ad- 
vantages over the conventional method. Disconnected diagrams are avoided 



112 Lambert and Hagston 

and Dyson's equations appear naturally at each order of perturbation 
theory [cf. the first two terms on the right-hand side of equation (32)]. 
Notice that the last term on the right-hand side of equation (32) contains a 
three-particle Green function G (3'3). As further iterations are carried out, 
terms involving higher-order Green functions G < . . . .  ) appear. On physical 
grounds, one expects that for a system which does not exhibit long-range 
order (L.R.O.), 

lim G < . . . .  )= 0 (33) 
/'?1 " " *  O O  

and hence the series obtained from iterative procedure should converge and 
be immediately applicable as it stands. However, in the presence of L.R.O., 
one expects equation (33) to be violated and less direct methods are 
required. An example of this situation is given in the following section. 

The function F(k) has yet to be specified. Within the conventional 
approach, F(k) is fixed by invoking the adiabatic hypothesis. Essentially this 
consists of assuming that in the limit H 0 ~ H, I~N) becomes identical with 
pt'iv ). Within the present formalism, a similar technique can be applied. 
Considering first the situation arising when S = -  1 (corresponding to 
fermions), we note that if it is assumed that in the limit H ~  H 0, Jxt'u) 
becomes identical with IdPu), then the choice F(k)= 0(k-kF) must be 
made. In this situation, the fermion perturbation theory obtained from the 
present hierarchy of equations is identical with the perturbation theory 
obtained by the conventional approach. 

For bosons (S = + I) the assumption that H ~  H o implies I % )  ~ ](IJN) 
leads to the choice F ( k ) - - 1 -  6k-o- In addition since H commutes with the 
number operator, one concludes that (in the thermodynamic limit) the 
perturbation series generated from equation (32) describes a zero density 
Bose gas only. Thus one is led to expect that for a finite density Bose fluid in 
its ground state either the Green functions are nonanalytic, or the condition 
(33) is violated. For a condensed Bose system described by equations such 
as (2), the latter expectation is borne out and it is of interest to consider the 
perturbation theory which arises from the hierarchy of equations in this 
situation. We address ourselves to this application of the present formalism 
in the following section. However, before proceeding, it is convenient to end 
this section with a further remark concerning the function F(k). 

In general, the validity of the limiting procedures discussed above are 
questionable when the exact Green functions of the interacting systems are 
nonanalytic in the region H---, H 0. Within the present formalism, the 
function F(k) is not fixed from the outset and one may calculate such 
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physical quantities as the ground state energy E as a functional of F(k). In 
principle, the function F(k) may then be obtained by minimizing E with 
respect to F. Thus, we are led to determine F from the equation 

8E[F(k)]  = 0  (34) 

which is expected to have important applications in situations in which the 
above limiting procedures fail. 

5. GROUND STATE PERTURBATION THEORY OF A 
CONDENSED BOSE SYSTEM 

In the previous section, we demonstrated that the present approach 
may be successfully employed to yield a perturbation theory of a finite 
density Fermi system and a zero density Bose "gas." In the present section 
we show how the hierarchy of equations may be solved iteratively to yield a 
perturbation theory of a finite density Bose system. It is demonstrated that 
inconsistencies no longer arise from the k = 0 contribution. Instead, there 
appears a self-consistent equation for the k = 0 Green function, which leads 
to a well-known relation among the self-energies of the theory. The final 
result is equivalent to the well-known Hugenholtz and Pines theory. 

In what follows, we follow Beliaev (1958) and employ the Heisenberg 
picture of the Hamiltonian H and not the Heisenberg picture of the 
Hamiltonian H -/z~'.  This is permissible, because in the present formalism 
H commutes with the number operator N. In addition, we set 

F(k) =l - -~k,  o 

In view of the fact that equation (33) is violated by the condensate 
Green functions, it is convenient to separate the contributions from the 
k = 0 mode by writing 

+ ( x )  = r  + v- 'P-ao  

where 

#/(x) =V-'/2 E e-ikXak (35) 
k:~0 

By analogy with equation (14), the noncondensate Green functions G '~ .... ) 



114 Lambert and Hagston 

are defined by 

+ ,,)/z~,( . . . .  ) = (q'ulT [~P~(1) ' 't ( i)  (m ~ (I...m; I ' . . . n ' )  . . .q~n(m)@n(l ' ) . . .qJg(n ' )] l ' t 'N)  

With this definition, the Green functions of equation (14) may be written as 
a sum of products of their condensate and noncondensate components. As a 
simple example, we note that since H commutes with the momentum 
operator, 

G(l"l)(1 ; 1 ') = G '(1" ')(1 ; 1') + Go (l' 1)(1 ; 1') (36) 

In order to emphasize this separation, it is convenient to modify the 
diagram rules (i) to (iii) of the previous section. Two new rules [referred to 
as (i') and (ii')] are obtained from rules (i) and (ii) by replacing G ( . . . .  ) by 
G '( . . . .  ). In this way, thick solid fines now refer to noncondensate Green 
functions only. 

Similarly, defining the quantity g ' ( j -  j ' )  by [cf. equation (25)] 

g ' ( j -  j ' )  = V - '  E e -'u(x,-X'Agk(t j -- tj) (37) 
k = 0  

rule (iii) is now changed to the following: 

(iii') Denote g ' ( j ,  j ' )  by a thin solid line running f romj '  to j .  

The k = 0 contributions are described by the rules: 

(vii) Denote G(om'")(tt...t,,; t~...t'n) by m (n) dashed lines. One end of 
each line is left free and the other is to enter (leave) one of the points 
t l . . . tm(t ' l . . . t ' , ) .  

(viii) Denote V -  lg0(t j, tj) by a thin solid line running from tj to t) and 
associate a "0"  with the arrow of the line (cf. the first term on the 
right-hand side of equation (39)). 

Employing the above rules and rules (iv) and (v) of the previous 
section, equation (30) now becomes the two separate equations shown in 
Figure 5. 

In order to make contact with the theory of Hugenholtz and Pines, we 
proceed to evaluate the single-particle Green functions. To this end, equa- 
tions (29) are written in terms of their condensate and noncondensate 
components and the noncondensate Green functions appearing on the 
right-hand side of equations (38) and (39) are evaluated self-consistently 
using the iterative technique of Section 4. The result is given in Figures 6 
and 7, where we have adopted standard notation (Fetter and Walecka, 
1971) for the propagators G '(~ and G '(2'~ 
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t, t, t, 
,l") A 

G ' o ( t , , t , )  - -  - -  o . 

; 2 
{,' t; {; 

Fig. 7 

(43) 

Note that apart from the argument immediately preceding (35), equa- 
tion (2) and its analogs for higher-order condensate Green functions has not 
yet been employed. Thus, equations (40)-(43) are formally correct even 
when equation (2) is invalid. However, the self-energies are not decoupled 
and the equations, when taken separately, are not well defined. To see this, 
note that the diagram of Figure 8 involves a two particle k = 0 Green 
function and unless a suitable form for G~"' " is assumed, for example, 

i " G ~ o m ' ' ) (  t ,  . . . t i n ;  t~ . . . t ' )  = (n0)mexp[ - i l . t (  t 1 + . . .  + t , ,  - -  t '  l . . .  - -  t ' ) ]  

(44) 

the self-energies cannot be considered as separate entities. For this reason, 
equation (44) might be termed a "decoupling approximation." 

Introducing this approximation, equations (40)-(42) yield the well- 
known equations for the noncondensate Green function of a condensed 
Bose system (Beliaev, 1958) and may be combined to yield the following 
equation for the Fourier transform of G'(~'~): 

G'( l" (k ,  ~ + t~) 

g ' -  1(-- k + / ~ ) - ~ , L ( -  k +/z ) 

([g'-'(k + Y.,,(k + k + Y . , , ( -  k 

-- Zo2(k +/~) Y.20(k +/~)} 

(45) 

Equation (43) is quite new however and arises because the hierarchy of 
equations evaluates the whole Green function G (L1) rather than simply 

Fig. 8 
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G '~ In view of the assumed form for Go ~''l) given in equation (2b), it 
might appear that (43) is redundant. However, as shown in Appendix B, the 
self-energy o is related to the self-energies of equations (40)-(42) by 

o(o, = z , ,  (o, Zo2(O, 

Furthermore, it is also shown that equation (43) leads to relation 

(46) 

O<o,~ ) =/~ (47) 

Combining these equations yields the well-known Hugenholtz and Pines 
relation 

(48) 

which may thus be regarded as a self-consistency condition for the theory. 
This demonstrates how the Hugenholtz and Pines theory may be 

obtained by combining a Beliaev type of approach with the hierarchy of 
equations. Significantly, the self-consistent expression for the k = 0 Green 
function does not contain inconsistencies and instead provides a means of 
obtaining self-consistency conditions on the theory. 

This is a new development and opens up fresh avenues of analysis in 
the boson problem. As an example, one might consider alternative ab initio 
assumptions concerning the form of the m particle k = 0 Green functions. 
From the above analysis, it is clear that an approximation which decouples 
the self-energies is desirable and given such an approximation, equation (43) 
may be employed to yield self-consistency conditions on the theory. An 
extension of the Beliaev, Hugenholtz, and Pines theory has recently been 
proposed along the above lines (Hagston and Lambert, 1980) and has led to 
useful predictions in the long-wavelength region of the excitation spectrum 
of a Bose fluid. 

6. CONCLUSION 

The aim of the present paper has been to introduce a new approach to 
perturbation theory based on a hierarchy of integral equations and its 
solutions. We have sought to illustrate the new techniques involved by 
deriving some well-known results of perturbation theory. The formalism is 
extremely general and is applicable to any quantum system which possesses 
a Hamiltonian. For convenience, we have restricted the analysis to the 
nonrelativistic case of a many-particle system interacting via an instanta- 
neous two-body potential. 
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One of the most interesting features of the above formalism is the 
transparancy of the link between the hierarchy of equations and diagram- 
matic analysis. This is extremely useful when one wishes to relate a 
self-consistent approach to the summation of a given subset of diagrams. 
For example the Hartree-Fock approximation may be obtained, without 
recourse to perturbation theory, by employing the factorization 

G(2'2)(1,2; 1',2') = G(1 ; 2')G(2; 1')+ SG(1 ; l ' )G(2; 2') (49) 

Substitution of this equation into the last term on the right-hand side of 
equation (30) leads to the desired result. Furthermore, if one includes in the 
factorization (49), an anomolous term of the form G(Z'~176 1',2'), 
one obtains a generalization of Gorkov's approach to the theory of super- 
conductivity (Gorkov, 1958). Since the present analysis is independent of 
statistics, this feature may have interesting applications within the pairing 
theories of superfluidity (Evans and Harris, 1978; ter Haar, 1977). 

In Section 4, the link with diagrammatic analysis was exploited to yield 
a well-known perturbation series, without introducing the adiabatic hy- 
pothesis. Disconnected diagrams were avoided and Dyson's equations ap- 
peared naturally at each stage of the iterative technique employed. The 
terms of the series are functionals of F(k). This quantity may be determined 
by examining the limit H~ = 0 or by the minimization principle of equation 
(34). The latter is expected to be useful in situations where I't,N) is not the 
adiabatic transform of I~N). The analysis of Section 4 is applicable to both 
a finite density Fermi system and a zero density Bose system. 

An important consequence of avoiding the use of adiabatic switching is 
that the Green functions appearing on the right-hand side of equations (28) 
are defined with respect to the Heisenberg picture of H and not H ~. Thus, 
these functions are exact propagators of the interacting system and in 
situations where physical arguments are employed to yield expressions for 
the Green functions, the hierarchy of equations may be used to obtain 
self-consistency conditions on the resulting theory. An example of this is 
given in Section 5, in which the self-consistent equation for the condensate 
Green function [equauon (43)] yields the self-consistency condition (47). We 
emphasize that this technique leads to inconsistencies when coupled within 
the conventional approach to perturbation theory and hence the present 
formulation allows a new self-consistent approach to the boson problem. 
Indeed, the analysis of Section 5 has already been successfully employed 
(Hagston and Lambert, 1980) to yield a self-consistent extension of the 
Beliaev, Hugenholtz, and Pines formalism. 

Finally, we remark that the present ground state formalism is readily 
extended to finite temperatures (Lambert, 1981) by employing a finite 
temperature hierarchy of equations analogous to equations (28). In addition 



Perturbation Theory of Many-Particle Systems 119 

(Lambert and Hagston, 1981; Hagston and Lambert, 1981) the above 
formalism has been employed to yield a self-consistent perturbation theory 
of many-particle systems based on a renormalization of the interparticle 
potential. 

APPENDIX A. DERIVATION OF EQUATION (15) 

In the present section, an arbitrary Heisenberg (interaction) picture 
operator will be represented by Bt4(ti)(B(ti) ). To simplify notation, we use 
t, to label the operator as well as the "time." Equation (15) is derived by 
analyzing the first term on the left-hand side and to this end we consider the 
following time-ordered product of operators: 

e -~ltlei~'~tT(attk(t)Bn(t,).. .Bt4(t,) } (A1) 

It is convenient to impose the condition 

t l> t 2 > . . . >  t j_ l>  t>  t j > . . . >  tt (A2) 

which allows us to write 

e -~l'lei~ 

= e -~l'lei~'~tSJ-'BH(t I ) . . .Bn ( t  j_ l )aHk( t )Bn( t j ) . . .B t4( t t )  

= SJ- 'U(O, t , )B ( t l )U( t ,  ' t 2 ) . . . B ( t j _ , ) U ( t j _ l ,  t )ak e -~1/I 

• u(t,  t j)8(tj)u(tj , t j+,)8(tj+,) 

... U( tt_ I , tt) B( tt)U( t t, t")U( t",O) (h3) 

where the last line follows from the relations 

BH( t ) = U(O, t )B(  t )U( t,O) (A4) 

atk( t  ) = e -i'~ k (A5) 

and the fact that for arbitrary t", 

U( t,,O) = U( t t, t")U( t",O) (A6) 

We analyze the right-hand side of equation (A3) by commuting a k to 
the right until it lies between the operators U(tt, t") and U(t",O). To 
facilitate this exercise, we note that from the definition, it follows that 

.O,[e-~l"lU(t , t ' )akU(t ' , to)]  = - i U ( t , t ' ) X ( t ' ) U ( t ' , t o )  (A7) 
u u  ~ - 
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where 

X(t') = ([a  k, Hi (t ' )]--iesgn(t ' )ak)e-*1, '1 (A8) 

Integrating equation (A7) and noting the boundary condition, yields 

l t ake -~ltlU(t, to) = U(t, to)ake -,ltol_ i ftodt U(t, t ' )X(t ' )U(t ' ,  to) (A9) 

With the help of this equation, we now proceed to commute a k in 
equation (A3), to the right. This yields 

e - ~lOei~ 

= S j -  1U(O, tt)B(tl)U(tl, t2) . . .B( t j_  t)U(tj_ t, t) 

I [-- i  Stdt'U( t, t')X(t') U( t',tj ) ]B ( t j )U(  tj, ' j+l )..- 
t -  / ts ] 

• B(tt)U(tt, t")U(t", O) + U(t, t j ) [a  k, B(0)] _ s 

• e - EIOIU(tj, t j+ i)B(tj+ i)...B(tt)U(tt, t")U(t",O) 

+ SU(t't j)B(tj)[ - i ftJts+, dt'U( tj't') X( t')U( t" tJ+l)] 

• B(tj+ t)... B(tl)U(tt, t")U(t", O) 

+ SU(t, tj)B(tj)U(tj, tj+ t)lak, B(tj+ l ) l -  s e-  *lt,+,l... 

• B(tt)U(tt, t")U(t",O) 

Lambert and Hagston 

+ s~-Ju(t ,  t ) a ( O ) u ( t  j, tj+ ,)a(tj§ ,)... 

• [a k, B(t#) ] _ s e - *lt'lU(tl, t")U(t",O) 

+ S t- J+ 1U(t, tj)a(tj)U(tj, tj+ 1)B(tj+ I)"" 

• B(t t ) [ - i  ft:,'dt'U(t,, t ' )X(, ' )U(t ' ,  t")]U(t", O) 

+ S t-j+ IU(t, tj)B(tj)U(tj, tj+ i)B(tj+ i)"" 

• B(t t )U(t  t, t")akU(t",O)e -Eit,,l/ 
I 

(AlO) 
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Noting that 

U(0, t")akU( t",O ) = ei'~ t '') ( a l  1) 

and 

f "  d t 'U( t i ' t ' )X ( t ' )U( t " t i+ ' )=U( t i 'O)[  f t i  dt 'ei~k"X'(t ') lU(O'ti+l) 
t~+; [. ti+ I J 

(A12) 

where 

eiOk" Xe(  t ') = U( O, t') X( t') U( t', O ) (A13) 

and choosing t" to satisfy t t > t", equation (A10) becomes 

e - ~l'lei~ktT(ank(t)B e ( t , ) . . .  Bn(t t )  ) 

I 
= ~. sr-le-~lt~lei '~ 

r = l  

X [aek(tr) , Be(tr)  ]_SBe( tr+l) . . .Be( t t )O( t  - t r )  

- i f t~d t 'T  ( Xe(  t') Bt4 ( tt). .. Bn (t t))e ''~k'' 

+ Ste -*" le i~C'Bn( t l ) . . .Bn( t t )ank( t"  ) (A14) 

In view of the condition (A2), and the remarks above equation (17) of the 
text, this may be written 

e -~ltlei '~ ) 

I 
= E S r -  le - ~lt ' lei~ktrZ 

r ~ l  

> ( ( B H ( t l ) ' " B H ( t r - I ) [ a H k ( t r )  ' n H (  t r ) ]  - S 

• Bn(tr+ , ) . . .Be( t ; ) )O(t  - tr) 

- i f / ,dt 'T( X~I (t') Be( t  I ) . . .Be( t l ) )e  i~k'' 

+ e-~lC'le"~ (A15) 
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This equation is only valid for t t > t". To remove this restriction, 
consider repeating the analysis for some other value of t. Denoting this 
value of t by T and subtracting the result from equation (A15) yields 

e -Eltlei'~ktT(al4k(t)Blf(tl)...Bn(tt)) 

-- e -  Elrlei'~krT{ ank( t )BH( t l ) . . .Bn(  tt) ) 

I 
= E s r -  l e -  elt'lei~~ 

r=l 

• ( B n ( t , ) . . . B H ( t  r- ,)[aHk(/r) , Btt(tr) ] _sBH(tr q- 1)...BH(t/) ) 

• (O(t -- tr)-- O ( T -  tr) ) -  i f ~ d t ' T ( X n ( t ' ) B n ( t , ) . . . B n ( t , ) ) e  '~k'' 

(A16) 

This equation is valid for arbitrary t and T. Furthermore, it is valid for 
arbitrary (ti). To see this, substitute equation (17) into the first term on the 
right-hand side. Each term in the resulting equation contains l operators 
B(ti). Hence for arbitrary (ti) the operators B(t~). . .B(t t)  can be simulta- 
neously reordered on both sides and any factors S p resulting from P 
permutations cancel exactly. 

The derivation of equation (15) is completed after replacing Bn(t i ) . . .  
Bn(tt)  by ~n(2)...q~n(m)q, tn(l')...~k~(n') and noting that 

APPENDIX B: DERIVATION OF EQUATIONS (46) AND (47) 

In the thermodynamic limit, the first term on the right-hand side of 
equation (43) vanishes and a combination of this equation with (44) yields 

no e -i~(t,- ti) = no e -i~(t,- t~) o(0,/~) (B1) 
II 

where o(k, ~) is the Fourier transform of the self-energy o. Hence, from 
(B1) 

o(0,/x) =/~ (B2) 

We proceed to demonstrate that 

a(0,/~) = Y,,, (0, /~)-  Xo2 (0,/~) (B3) 
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Our analysis is essentially based on a trivial modification of the 
arguments employed by Abrikosov et al. (1963) to derive equation (47). 

The average of U~(t 0, - to) with respect to the vacuum of the operators 
~b' and ~b 't is given by (Beliaev, 1958) 

U ( t o , - t o ) = T [ e  or] (B4) 

where 3' is a functional of a 0 and at 0. 3' is a sum of vacuum loops (Beliaev, 
1958) and in general, eacb contribution to 3' contains m pairs of interaction 

t , t , picture operators ao(t ,) . . .ao(t ,~)ao(q). . .ao(t , ,  ). Let "7 be the function 
obtained by replacing such strings of operators in 3' by (36). (In this way, we 
replace operators a0(ti)[at0(t~) ] by dotted lines entering (leaving) the points 
q[t~].) Then 7 will be a c-number function which may be written 

: ( B S )  

where 7,, is the sum of all vacuum loops containing m pairs of dotted lines. 
A careful consideration of the analysis which led to equations (40)-(43) 
reveals the following: 

(i) o(0,/z) is obtained by first removing a single arbitrarily chosen 
ingoing dotted line from 7 and then removing in all possible ways an 
outgoing dotted line. Thus 

m 

o(0, ~) : ~ n--~o 3,--" (B6) 

(ii) Y~,,(0,/~) is obtained by removing an ingoing and outgoing dotted 
line from 7 in all possible ways: 

m 2 

(By) 

(iii) Finally, Y.o2(0,/~) is obtained by removing a pair of outgoing dotted 
lines from 7 in all possible ways: 

Y.o2(0,/z ) = y~ m ( m  - I) T,,, (B8) 
m 17 0 

A combination of equations (B2), (B6) to (B8) yields the desired result. 
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